标题: 塌先生2006系列问题05
性别:未知-离线 俺是马甲

Rank: 4
组别 士兵
级别 偏将军
好贴 1
功绩 9
帖子 368
编号 28860
注册 2004-12-26


发表于 2005-11-16 16:51 资料 短消息 看全部作者


QUOTE:
原帖由塌鼻子先生于2005-11-16, 15:56:54发表
由N个1组成的数,即1/9(10^N-1),其平方的数字之和为2006。求出N或证明它不存在。

不存在的,呵呵
原因很简单,就是因为2不是3的平方剩余


顶部
性别:未知-离线 俺是马甲

Rank: 4
组别 士兵
级别 偏将军
好贴 1
功绩 9
帖子 368
编号 28860
注册 2004-12-26


发表于 2005-11-16 21:09 资料 短消息 看全部作者


QUOTE:
原帖由塌鼻子先生于2005-11-16, 19:35:04发表
寂寞空手道兄所说:

由题目得出,当N=1时,数=1,平方的数字和为1;
当N=2时,数=11,平方的数字和为4;
当N=3时,数=111,平方的数字和为9;
...
不难看出每一次的结果都是N^2。
————————

这个推论显然是错的。当N=10时,1111111111的平方,数字和就不是100.
不完全归纳是数学思维的大忌,望引为戒。

这个,确实比较………………
不过,如果要按照如此说的话,我倒可以说:
如果N是3的倍数,
则最后各位数上的数字之和亦是3的倍数(实际上是9的倍数)
如果N不是3的倍数,则最后各位数上的数字之和必然除3除1
而2006除3余2,所以不存在这样的N  
这样说,总没有问题吧,呵呵


顶部
性别:未知-离线 俺是马甲

Rank: 4
组别 士兵
级别 偏将军
好贴 1
功绩 9
帖子 368
编号 28860
注册 2004-12-26


发表于 2005-11-16 21:30 资料 短消息 看全部作者


QUOTE:
原帖由塌鼻子先生于2005-11-16, 21:17:09发表
这样吧,换个问法。

对形如111…11(N个1组成的数),求其平方的数字和的表达式F(N)。特别地,求F(2006)。

嘿嘿,这可不是换个问法的问题
问题显然难算了很多啊
塌先生尽是蒙人
顶部

正在浏览此帖的会员 - 共 1 人在线




当前时区 GMT+8, 现在时间是 2025-8-27 10:35
京ICP备2023018092号 轩辕春秋 2003-2023 www.xycq.org.cn

Powered by Discuz! 5.0.0 2001-2006 Comsenz Inc.
Processed in 0.009630 second(s), 9 queries , Gzip enabled

清除 Cookies - 联系我们 - 轩辕春秋 - Archiver - WAP